Enrico Piconcelli N. Menci A. Grazian [OAPD]

L. Zappacosta, A. Travascio, A. Luminari, F. Tombesi (Roma2)

OUTLINE OF THE ACTIVITES AT OAR+Roma2

WP1 – BH feedback at the epoch of the formation of the largest BHs Task1.1 Luminous quasars at z=3-4

• The WISSH Project The Big Bros (the most luminous QSOs at the highest redshifts)

WP4 – BH wind and Cosmological models Task 4.1 BH nuclear wind models

•The WINE model: latest results Improvements of the Menci+19 SAM

WP3 – Local laboratories for ISM and BH wind/jet physics

PDS 456: **MUSE** + ALMA investigation Location & Energetics of UFOs in nearby AGN with WINE

GOAL: Studying the AGN-driven feedback at its extreme

Guidelines for the design of the WISSH Project

• Sampling the brightest end of the AGN LF

Our constraints of the models of co-evolution and wind acceleration
 "Caught in the act" approach: QSOs shining at cosmic noon
 →Redshift range z~1.5-3.5 peak of vigorous star-formation and QSO activity
 Opportunity of extending all the empirical relations involving L_{BOL}

Bright targets! → Cheap & easy for spectroscopic follow-ups

◇ 2MASS sources with K~14 [~30 min @LBT-LUCI]
◇ X-rays [~2ks detected, ~30 ks spectrum]
◇ ALMA [~ 2h for kinematics of [CII] emission line at 158µm]

Looking for the Quasars T-ReX:

~90 WISE/SDSS Selected Hyper-luminous (WISSH) Quasars

- SDSS broad-line quasars at z > 1.5AND All-sky WISE(22µm) > 3 mJy
- Bolometric Luminosity > $10^{47.2}$ erg/s
- Redshift range 1.9 < z < 4.5 Peak at z~3
- Large amount of archival data!
- ✓ SDSS spectroscopy [UV range]
- ✓ SDSS+2MASS+WISE photometry
- ✓ Good Chandra+XMM coverage

"Holistic" approach: AGN/Winds/Host/CGM

WISSH Tasks:

- ✓ Probing widespread presence of outflows from different gas phases
- ✓ …and different distances [micro→meso→macro scales]
- \checkmark Constraining the properties of the central engine
- ✓ Studying the ISM and SFR of quasars host galaxies
- ✓ Exploring the CGM of hyper-luminous QSOs

Extensive multi-band coverage from radio to X-rays

- ✓ Backbone programs: LUCI@LBT [EP] + MUSE [Fiore] + Chandra [EP]
- ✓ Archival & Proprietary data: ALMA, NOEMA, JVLA, HERSCHEL, WISE, UKIDSS, 2MASS ESO/VLT/MUSE SINFONI X-shooter, LBT/LUCI, TNG, SDSS, HST CHANDRA, XMM → PIs: Bischetti, Bruni, Gavignaud, Testa, Zappacosta

PUBLICATION BREAKDOWN [2017-2020] Astronomy Astrophysics

- I. "Powerful ionised outflows in hyper-luminous quasars" Bischetti, EP +17
- II. "Giant star nurseries in hyper-luminous quasars" Duras, Bongiorno +17
- III. "X-ray properties of hyper-luminous quasars" Martocchia, EP +17
- IV. "BLR- vs. kpc-scale winds" Vietri, EP +18
- V. "ALMA reveals the assembly of a giant galaxy around a z=4.4 hyperluminous QSO" *Bischetti, EP* +18
- VI. "Fraction and properties of BAL quasars in the hyper-luminous regime" Bruni, EP +19
- VII. "Outflows and metals in the CGM around the hyper-luminous z~3.6 quasar J1538+08" Travascio, Zappacosta +20
- VIII."The impact of extreme radiation field in the accretion disk & corona interplay" Zappacosta, EP +20
- IX. "Cold gas content & environment of luminous QSOs at cosmic noon" Bischetti, Feruglio +20

✓ Winds in the BLR (sub-pc) traced by CIV blue wings: intermediate between SMBH and pc-scale

- Powerful, large-scale ionized outflows M >1000 M_☉/yr Ė ~10⁴⁵⁻⁴⁶ erg/s
 1/3 of LBT/LUCI spectra show broad [OIII]
- 2/3 DO NOT show [OIII] but show large CIV shifts [NLR vs BLR winds!]
 Vietri+18 Bischetti+17

WIDESPREAD PRESENCE OF WINDS AT DIFFERENT SCALES

✓ Winds in the BLR (sub-pc) traced by CIV blue wings: intermediate between SMBH and pc-scale

- \circ A non-negligible fraction show low L_X compared to $L_X\text{-}L_{UV}$ relation \circ Discovery of a relation L_X and α_{OX} with CIV shift
- CIV winds favored by low L_X → these winds limit the corona X-ray production? Zappacosta+20

Discovery of the first CIV nebula around a single radio-quiet quasar

 \rightarrow Same emitting gas

Non pristine gas in the CGM

Travascio +20

Enrico Piconcelli \star Osservatorio Astronomico di Roma

FIRST IMAGING AN OUTFLOW IN THE CGM

- Huge dispersion ~750 km/s (typically observed ~200-400 km/s)
 Skowposs map: asymptotry of the line pr
- Skewness map: asymmetry of the line profile
- \circ Presence of a broad ($\sigma{\sim}1200$ km/s) and blueshifted (- 1500 km/s) component as indication of outflowing gas over ${\sim}30$ kpc

Travascio +20

WISSH IX: Cold gas & environment of luminous QSOs WIS

- 7 out of 9 QSOs show one (or more) nearby line emitter (Merger fraction 80%)
 - Typical project distance 6-40 kpc (J1015 companion at 2.2 kpc!!)
- High CO excitation (also in the companions)
- Large velocity residuals (data-disk model)
 High dispersion offset from the nucleus
- SFR ~200-1200 Msun/yr
 Large SFE ~SFR/L_CO >100

Blschetti +20 arXiv:2009.01112

- Concurrent intense growth of both SMBH and host galaxy
- Molecular gas will be used up in few tens of Myr
- Hyper-luminous QSOs are progenitors of "red&dead" giant ellipticals
 Mergers significantly contribute to the final mass of the galaxy

Modelling UFOs in X-ray spectroscopic data

Current status

- Spectral analysis is done mainly through simulated absorption/emission spectra (e.g. *Cloudy, XSTAR*).
 P-Cygni profiles are modeled *ad hoc* combining emission and absorption spectra.
- ii. Simulated spectra rely on several assumptions on the **geometry** and the **kinematics** of the **wind**
- iii. The wind is modeled as a layer of gas at rest with turbulent broadened features, which are a posteriori blue-shifted to account for the wind velocity smearing

WINE model

WINd Emission/absorption

- i. WINE is a **self-consistent model** for absorption and emission from disk winds. It is highly customizable and can mimic different launching scenarios.
- ii. The physical, kinematical and geometrical parameters are determined fitting the model to the observed spectra and minimizing the χ^2 statistic
- iii. Relativistic effects are taken into account in the radiative transfer calculations. Absorption and emission profiles are directly built according to the geometry and velocity profiles.

On the importance of Special Rel. effects in modelling UFOs

Beaming effect:

- Wind with (sub)relativistic velocity
- back-illuminated by the AGN

Fig. 1: Deboosting factor Ψ in the gas reference frame K' as a function of v_{out} assuming $\theta = 180$. For speeds lower than 0.1 the speed of light the radiation intercepted by the outflow and the (rest-frame) observer at infinity are virtually the same. For higher speeds, the fraction of intercepted radiation drops dramatically due to special relativistic effects.

$$L' = L \cdot \Psi$$

Fig. 3: Absorbing gas N_H required to reach a given value of the optical depth as a function of v_{out} . Spectral parameters are as in

Luminari et al. 2020, A&A

On the importance of Special Rel. effects in modelling UFOs

Optical depth of the wind depends on N_H and v_out

- Estimating N_H from optical depth needs a velocity-dependent correction
- ✓ This correction nearly propagates to Mout and Ekin
 ✓ Correction of 20 120% for the observed range of v_out ≈ 0.1 0.3c

Relativistic effects reduce the radiative driving

Wind opacity is reduced for increasing v_out \rightarrow reduced radiative pressure

Additional interesting results, i.e failed winds are a natural outcome in any radiative driven scenario (expected to be ubiquitous). We show that successfull winds can be launched only through very high launching velocities (~v_rot) or extreme Eddington ratios (>1).

Luminari et al. 2020 ~submitted

PERSPECTIVES ON THE MOST LUMINOUS QSOs

Activities led by EP (OAR)

- MUSE view of WISSH QSOs (Blackout Fellowship)
- ALMA+NOEMA view of WISSH (M. Bischetti)
- Study of ultra-fast BAL winds (G. Vietri)

X ULTRA-FAST BAL SYSTEMS DISAPPEAR and VARY IN CONCERT

PERSPECTIVES ON THE MOST LUMINOUS QSOs

Activities led by L. Zappacosta (OAR)

X-ray + X-shooter data of the Big Bros, i.e. two hyper-lum QSOs at z~5

Aims: measure X-ray parameters, SMBH mass, luminosity, & winds parameters (blueshifts and BAL)

Zappacosta et al. in prep.

PERSPECTIVES ON BH WINDS & COSMOLOGICAL MODELS

- Activities led by A. Luminari (Roma2, OAR)
- Paper presenting the WINE MODEL
- Application(s) of the WINE model to the data
 PG1448 (Laurenti et al. in prep.) + Hi-Edd QSO (EP in prep.)

Activities led by N. Menci (OAR)

- Improving the Menci+19 SAM by
- (i) including a 2D description of the outflow in order to accurately measure its impact on the host galaxy properties
- (ii) including the stellar velocity dispersion of the bulge to study the evolution of the MBh-Sigma relation

